,3(c)

erks)

cach

arks)

g ...

arks) arks)

wing pring bout preas

ß of

perks)

ency

erks)

btain

arks)

of a

arks)

rung

arks)

hrls)

high brks)

erks) erks) of a erks)

NEW SCHEME

Third Semester B.E. Degree Examination, July 2007 EC/TE/EE/BM/ML/IT/CS/IS

Electronic Circuits

Time: 3 hrs.]

[Max. Marks:100

Note: Answer any FIVE full questions.

- Define diffusion capacitance. Derive an expression for the same.

 (05 Marks)
 - b. Draw the piece wise linear V-I characteristics of a P-N junction diode. Give the circuit model for the ON state and OFF state. (05 Marks)
 - c. The input voltage V_i to the two-level elipper circuit as shown in fig.1(c) varies linearly from 0 to 150 V. Sketch the output voltage V₀ to the time scale. Assume diodes as ideal.

 [66]

 [10]

 [10]

 [10]

 [10]

 [10]

 [10]

 [10]

 [10]

 [10]

 [10]

 [10]

 [10]

 [10]

- 2 a With necessary circuit and waveforms, explain a bridge rectifier circuit with capacitor filter. Derive an expression for the ripple factor. (10 Marks)
 - b. Design a full wave rectifier filter to meet the following requirements. DC output voltage = 15 V, load resistance = 1 K, rms ripple voltage on capacitor <1 % of dc output voltage. The AC supply voltage is 230 V at 50 Hz. (10 Marks)
- What is the need for bias compensation? Explain the compensation techniques used for V_{BE} and I_{CBO}.
 - b. The circuit shown in fig.3(b) uses silicon transistor with $\beta = 45$, $V_{CC} = 24$ V, $R_C = 10$ K, R = 10 K, $R_E = 0.27$ K. If $V_{CE} = 5$ V under quiescent conditions, find the value of 'R' and the stability factor $S(I_{CO})$.

c. What do you mean by thermal runway of a transistor? Explain.

(04 Marks) Contd.... 2

- Obtain an expression in terms of 'h' parameters for a transistor as a two-port network. Using the above developed equations obtain the hybrid model of CE, CC and CB configurations. (08 Marks)
- b. State and explain Millers theorem. (04 Marks)
- c. A transistor is connected as a common emitter amplifier driving a load of 10 kΩ. It is supplied by a source of 1 kΩ internal resistance. The 'h' parameters are h_{ie} = 1.1 kΩ, h_{fe} = 50, h_{re} = 2.5 X 10⁻⁴, h_{oe} = 1/40 kΩ. Find: i) Current gain ii) Voltage gain iii) Input impedance iv) Output impedance. (08 Marks)
- a. Derive an expression for: i) Input conductance (g_{b'e}) ii) Output conductance (g_{cc}) for a transistor at high frequency.
- b. Give the classification of multistage amplifier. Explain the various distortions in amplifiers. (08 Marks)
- c. Discuss the general characteristics of a negative feedback amplifier. (06 Marks)
- Derive an expression for input and output resistance of a voltage shunt feedback amplifier. (06 Marks)
- b. Explain the different types of power amplifiers. (08 Marks)
- c. An ideal class B- pushpull amplifier with input and output transformers, has V_{CC} = 20 V, N₂ = 2N₁ and R_L = 10 Ω. The transistors have h_{FE} = 20. Let the input be sinusoidal. For the maximum output signal V_m = V_{cc}. Determine: i) The output signal power ii) Collector power dissipation iii) Conversion efficiency. (06 Marks)
- a. Obtain an expression for the closed loop gain of a non-inverting amplifier. (07 Marks)
- With necessary sketch and characteristic curves explain the operation of a Schmitt trigger. (08 Marks)
- c. What do you mean by precision rectifiers? Explain full wave precision rectifier.

(05 Marks)

- a. Explain the working of SAR ADC. (06 Marks)
- b. Explain the working R 2R ladder DAC. (07 Marks)
- c. Explain the applications of astable multivibrator as:
 i) Square wave generator ii) To achieve variable duty cycle control. (07 Marks)